Closing Today: 3.9
Closing Mon: $\quad 3.10$
Midterm 2 is Tuesday!
Covers 3.4-3.6, 3.9, 3.10
All derivative rules
Product, Quotient, Chain
Implicit (includes inverse trig)
Logarithmic
Parametric
Some Applications
Related Rates
Tangent Lines
Linear Approximation (Friday)
Expect a problem of each type.
Expect 2 pages of related rates.

3.10 Linear Approximation

Idea: "Near" the point ($\mathrm{a}, \mathrm{f}(\mathrm{a})$) the graphs
of $y=f(x)$ and the tangent line
$y=f^{\prime}(a)(x-a)+f(a)$
are very close together.
We say the tangent line is a linear approximation or linearization or tangent line approximation to the function. Sometimes it is written as

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

In other words:
If $x \approx a$, then

$$
f(x) \approx f^{\prime}(a)(x-a)+f(a)
$$

Some old exams have critical number or max/min questions, you can ignore these questions for our second midterm.

Examples:

1. Find the linear approximation to

$$
f(x)=\sqrt{x} \text { at } x=81
$$

Then use it to approximate the value of $\sqrt{82}$.
2. Find the linearization of

$$
g(x)=\sin (x) \text { at } x=0
$$

Then use it to approximate the value of $\sin (0.03)$.
3. Using tangent line approximation estimate the value of $\sqrt[3]{8.5}$.

Some Homework Hints:

Problem 10: Suppose that a and b are pieces of metal which are hinged at C.

According to the "law of sines," you always have:

$$
\frac{b}{a}=\frac{\sin (B)}{\sin (A)}
$$

At first: angle A is $\pi / 4$ radians $=45^{\circ}$ and angle B is $\pi / 3$ radians $=60^{\circ}$.
You then widen A to 46°, without changing the sides a and b.
Our goal in this problem is to use the tangent line approximation to estimate new the angle B.

Problem 8: A right circular cone of height h and base radius r has total surface area S consisting of its base area plus its side area, leading to the formula:

$$
S=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}
$$

Suppose you start out with a cone of height 8 cm and base radius 6 cm , and you want to change the dimensions in such a way that the total surface area remains the same. Suppose you increase the height by $26 / 100$. In this problem, use tangent line approximation to estimate the new value of r so that the new cone has the same total surface area.

